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Collisions of ions and atoms of 6Li and 7Li are explored theoretically over a wide range of energy from 10-14

to 1 eV. Accurate ab initio calculations are carried out of the Born-Oppenheimer potentials and the nonadiabatic
couplings that are responsible for the near resonance charge exchange. Scattering studies show that the calculated
charge exchange cross section follows Wigner’s law for inelastic processes for energies below 10-10 eV and
that the zero temperature rate constant for it is 2.1 × 10-9 cm3 s-1. At collision energies much larger than the
isotope shift of the ionization potentials of the atoms, we show that the near resonance charge exchange
process is equivalent to the resonance charge exchange with cross sections having a logarithmic dependence
on energy. A comparison with the Langevin model at intermediate energies is also presented.

I. Introduction

Ion-atom collisions are important processes that occur in
many physical environments such as plasmas, electrical dis-
charges, planetary atmospheres, and interstellar clouds. The
remarkable progress during the past few years in producing,
trapping, and controlling cold and ultracold systems including
ultracold plasmas,1 ultracold Rydberg gases,2,3 and ionization
experiments in Bose-Einstein condensates (BECs)4,5 has made
possible the investigation of the role of electric charge in regimes
that are dominated by the quantum or classical nature and their
overlap. Cold ion-atom collisions have been proposed as means
to implement quantum gates,6 to cool atoms7,8 and molecules9,10

lacking closed optical cycles, and to bind small BECs to ions.11

However, it turns out to be difficult to reach experimentally
quantum or semiclassical regimes because of the strong forces
produced by stray electric fields on ions. Recently, an observa-
tion of a charge exchange reaction between laser-cooled Yb+

ions in a Paul trap and Yb atoms in a magneto-optical trap has
been reported.12 Rate constants were obtained at collision
energies as low as 3 µeV. Good agreement with the Langevin
model for resonance charge exchange and theoretical calcula-
tions13 was obtained at energies on the order of millielectron-
volts.

The collision of an ion with its neutral parent atom of a
different isotopic composition involves elastic and charge
exchange processes

where the superscripts a and b label the isotopes. Because of
the different isotope shifts of the ion and the neutral atom, there
is a small energy difference ∆E in the charge exchange process.

For the case of HD+ for which ∆E ) 3.70 × 10-3 eV, we have
shown that at energies well above threshold, the scattering can
be described by an elastic two-state approximation for which
the direct coupling arising from the difference in nuclear masses
is neglected.14 The charge exchange occurs as the particles
collide in the lowest 2Σg

+ and 2Σu
+ Born-Oppenheimer (BO)

states of the nuclear ion HD+ and is driven by the difference
∆V ) Vg(R) - Vu(R) between the two potentials. At sufficiently
low energies, the inelastic cross section obeys Wigner’s law.15

Theoretically, we believe that this behavior occurs in other
similar systems; however, no precise test of the theory has been
made beyond HD+. This is partially due to the difficulties in
accurately evaluating the interaction potentials for many-electron
systems and more importantly the nuclear-electronic coupling
that brings the colliding species asymptotically to the correct
limit and enables the charge exchange process.

In the present work, we report our ab initio calculations for
charge exchange collisions between the isotopes of 6Li and 7Li
ions and atoms, for which the threshold energy ∆E has been
well determined both experimentally16 and theoretically17 to be
7.47 × 10-5 eV. Because of the relatively small number of
electrons involved, an accurate calculation of the interaction
potentials and the coupling elements is possible for the system.

II. Theory

We consider ion-atom collisions between 6Li and 7Li with
nuclear masses m6 and m7. The Hamiltonian after the separation
of the kinetic energy operator of the center of nuclear mass
(CNM) motion of the total system can be expressed in the body
fixed frame as

where T̂N is the kinetic energy operator for the relative motion
of the nuclei, T̂mp is the mass polarization term, T̂e is the electron
kinetic energy, R is the vector connecting the two nuclei, and
r measures the coordinates of electrons in the CNM frame. By
combining V(r,R) with T̂e, we obtain the nonrelativistic BO
electronic Hamiltonian
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aA+ + bA f {aA+ + bA (elastic)
aA + bA+ + ∆E (charge exchange)

(1)

Ĥ ) T̂N + T̂e + T̂mp + V(r, R) (2)
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where Ne is the number of electrons in the system and me is the
electron mass. Atomic units will be used throughout the article.
At collision energies well below the excited-state energies of
the lithium atom and ion, the function space is spanned by the
lowest two eigenfunctions of Li2

+ that separate at large R into
combinations of products of lithium atom and lithium ion wave
functions. The BO wave functions are of 2Σu

+ and 2Σg
+ symmetry.

The 2s f 2p transition of Li lies at 1.8 eV.
The mass polarization term reads

with m ) m6 + m7 being the total nuclear mass. We write the
corresponding matrix element between BO eigenstates |R〉 and
|�〉 as εR�

mp. The mass polarization matrix is symmetric, and
asymptotically, the two diagonal matrix elements are the same
for the g and u states.

The total wave function of the colliding system can be
expanded as a sum

where J is the total angular momentum, M is its projection,
ΘM,Λ

J (ϑ) is a generalized spherical harmonic, and �R
J (R) describes

the radial motion of the nuclei. Λ ) 0 for both BO states. After
substituting eq 5 into the time-independent Schrödinger equation,
multiplying with 〈�|, and integrating over the electronic
coordinates, we obtain the following set of coupled equations
for the radial functions �R

J (R)18,19

where µ ) m6m7/(m6 + m7) is the reduced mass of the system
and εR is the BO eigenvalue. We define

and

where δ is the Kronecker delta. Equation 6 for the nuclear
motion at energy E ) k2/2µ can be written as

where I is the 2 × 2 identity matrix and k2 is the diagonal matrix
with elements kR2 and k�

2 related to the threshold energy ∆E by

F is the first derivative coupling matrix. It has only off-
diagonal elements and approaches zero asymptotically in the
BO approximation, as we will show in Section III. The matrix
V originates from the radial and angular parts of the nuclear
kinetic operator and the mass polarization. The diagonal matrix
elements are the adiabatic potentials for the two states, which
can be written as

The diagonal Born-Oppenheimer correction (DBOC) εRDBOC

includes the mass polarization and the second derivative terms
from the nuclear kinetic operator.20-22 The off-diagonal matrix
elements couple the two states, and the corresponding eigen-
values separate to the correct limits (1/2∆E asymptotically. It
is convenient to write them in Hermitian form as

ṼR� contains the symmetric combination of the second derivative
coupling. The antisymmetric combination results in the second
term on the right-hand side of eq 12. Equation 9 has off-diagonal
coupling terms asymptotically. The proper scattering boundary
conditions can be restored in an atomic representation by
addition and subtraction of the two coupled equations of 9, and
the resulting equation is similar to eq 9

where �̃R,� ) �R ( ��, and the matrix elements of C are given
by

Solutions to eq 13 may be obtained through a modified
Numerov algorithm that accounts for the presence of the linear
derivative.14,23,24 The charge exchange and the elastic cross
sections can be expressed in terms of the scattering S matrix as

Ĥel ) T̂e + V(r, R) ) - p
2

2me
∑
i)1

Ne

∇i
2 + V(r;R) (3)
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2
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1
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FR� ) ṼR� + 1
2µ

d
dR

FR�

(12)

[I
d2

dR2
+ 2F

d
dR

+ k2 - (I
J(J + 1)

R2
+ 2µC)]�̃J ) 0

(13)

CRR ) 1
2
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and

respectively. The S matrix is obtained in the asymptotic region
from the scattering wave function �̃(R) ) J(R) - N(R) ·K and
S )(1 + iK)-1 · (1 - iK), where J(R) and N(R) are matrices of
the Riccati-Bessel and Riccati-Neumann functions.25

In the case of collisions of the same isotopes, all the off-
diagonal couplings in eq 13 disappear. Accordingly, resonance
charge exchange is related to the two elastic scattering processes
with phase shifts ηJ

g and ηJ
u for the g and u states, respectively,

by26

and for elastic scattering by

Nuclear masses27 of 6.0151223 and 7.0160040 were used in
the calculation.

III. Ab Initio Calculation of BO Potentials and Couplings

A. Born-Oppenheimer Potentials. Ion-atom collisions
between the isotopes of Li can be described by two BO
potentials, Vg and Vu, which have been previously calculated
using model potentials.28-31 In the present study, we employed
the partially spin-restricted open-shell coupled cluster method
with singles and doubles32 and perturbative triples,33 ROHF-
RCCSD(T), and with the correlation-consistent doubly aug-
mented polarized core-valence quintuple-� (d-aug-cc-pCV5Z)
basis34 to construct the BO potentials. All electrons were
correlated in the coupled cluster calculation. Basis set superposi-
tion error (BSSE) was accounted for by the counterpoise
procedure.35 The extra two diffuse functions added in an even-
tempered fashion with a factor 2.0 emphasize the long-range
interaction, which is critical to the collision dynamics in cold
and ultracold conditions. The calculation was carried out
between 2.0 and 30.0 bohr radii a0. The further extension to
large distances was achieved by adopting the asymptotic form

with ( for the g and u states, respectively. The dispersion term
(in atomic units) was expressed as

and the coefficients C4, C6, and C8 are, respectively, the sum of
the dipole, quadrupole, and octupole polarizabilities and the
corresponding dispersion coefficients. The atomic polarizabilities
have been accurately determined by direct variational calcula-
tions.36 They have the values Rdipole ) 164.1, Rquadrupole ) 1423,
and Roctuple ) 39 650. Fitting the calculated ab initio points
according to eq 20 yields C4 ) 164.6, C6 ) 1950, and C8 )
79 300. The fitted C4 agrees well with the accurate theoretical
value. There are discrepancies between the accurate variational
results for C6 and C8 and the values derived by ab initio
calculations. However, these two terms make little contributions
as R f ∞, where we obtain the S matrix by matching the
scattering wave function to the standard asymptotic form. The
exchange term is extended to large R with the form

with the fitted parameters A ) 0.153, R ) 2.154, � ) 0.630, B
) 0.997, and C ) -9.52. Bardsley et al.37 derived a similar
asymptotic representation with the parameters R ) 2.177, � )
0.6295, B ) 0.519. The fitted coefficients in eqs 20 and 21 are
adopted in our calculations.

The two BO molecular potentials are presented in Figure 1,
and the corresponding spectroscopic constants are listed in Table
1 with the available experimental and theoretical values. In
general, the agreement is satisfactory. The corrections from
BSSE are small, less than 1 cm-1 in the whole range of
internuclear distances. The larger discrepancies in ωexe are
related to the long-range behavior of the molecular potentials.

B. First Derivative Coupling. The first derivative term in
eq 7 couples the 2Σg

+ and 2Σu
+ states when the colliding particles

have different nuclear masses. The g and u symmetries of the
electronic wave functions are labeled according to the center
of charge (CC). The coupling is origin dependent,18,38,39 and the
relationship connecting CNM and CC is given by

σct(R f �) ) π
kR

2 ∑
J

(2J + 1)|SR�
J |2 (15)

σel(R f R) ) π
kR

2 ∑
J

(2J + 1)|1 - SRR
J |2 (16)

σct
res ) π

k2 ∑
J)0

∞

(2J + 1) sin2(ηJ
g - ηJ

u) (17)

σel
res ) 2π

k2 ∑
J)0

∞

(2J + 1)[sin2 ηJ
g + sin2 ηJ

u - 1
2

sin2(ηJ
g - ηJ

u)]
(18)

Vg,u(R) ∼ Vdispersion(R) ( Vexchange(R) (19)

Vdispersion(R) ) -1
2(C4

R4
+

C6

R6
+

C8

R8) (20)

Figure 1. Born-Oppenheimer potentials, first-order derivative cou-
pling F01, and matrix elements of Ṽ as a function of internuclear
distances. (a) Solid line is the BO potential of the 2Σu

+ state and dashed
line is the 2Σg

+ state. (b) Solid line refers to the first-order derivative
coupling F01 enlarged by 102. (c) Scaled diagonal matrix elements of
Ṽ, 103(Ṽ00(R) - Ṽ00(∞)) (solid line) and 103(Ṽ11(R) - Ṽ11(∞)) (dashed
line). (d) Scaled off-diagonal matrix elements of Ṽ, 105(Ṽ01(R) -
Ṽ01(∞)).

Vexchange(R) ) 1
2

ARRe-�R[1 + B
R

+ C

R2
+ O( 1

R3)]
(21)
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where η is the parameter that determines the origin of the
coordinate system and ∆m )(m7 - m6)/(m6 + m7). For the
homonuclear diatomic species, η ) 1/2. The first term on
the RHS of eq 22 is zero because of the g and u symmetry of
the electronic wave functions and the fact that 〈R|(∂)/(∂R)|R〉 )
0. The second term is nonzero only if there exists a mass
difference between the colliding partners. The evaluation of the
first derivative coupling becomes the calculation of the matrix
element of the electron velocity operator in the CC frame. We
calculated this matrix element using the multiconfiguration self-
consistent field (MCSCF) method40 together with the d-aug-cc-
pV5Z basis. The active space in the MCSCF calculation was
defined as 5 electrons in 18 molecular orbitals, (5e, 18o), which
are composed of the 1s2s2p3s3p atomic orbitals of the Li atom.
The accuracy of the method was verified by comparison with
the multireference configuration interaction41 (MRCISD) cal-
culations with the same basis function at selected internuclear
distances from 6.0 to 20.0 a0. The difference is, in general,
smaller than 3%. The reference wave function in the MRCISD
calculation is the MCSCF(5e,18o) wave function, and all
electrons are correlated. The calculated coupling constants as a
function of internuclear distance R are depicted in Figure 1.

The asymptotic behavior of FR� can be seen by rewriting eq
22 in the length gauge

In the BO approximation, it approaches zero as R f ∞.
C. Diagonal Born-Oppenheimer Correction and Second

Derivative Coupling. Effects beyond the BO approximation
for many-electron systems are difficult to evaluate accurately
because of the cumbersome expressions involved in the separa-
tion of the CNM associated with the nuclear kinetic operator
and the sensitivity of the small magnitude of those quantities
to the quality of the electronic wave functions.21,42,43 Individual
calculation for each of the terms expressed in eq 8 is possible
in most quantum chemistry packages except the mass polariza-
tion, where an approximation through the resolution identity

technique may be introduced. An alternative approach44-46 is
to compute the diagonal terms in the space fixed (SF) frame

where the sum is over the number of nuclear Cartesian
coordinates Ncoord, mI is the nuclear mass and ∇I

2 is the Laplacian
in Cartesian coordinate, I. Such an approach was justified
rigorously47 later, and it has been demonstrated that it has an
accuracy of 10-4 cm-1 for the DBOC of H2

48 and improves the
agreementwithexperimentsforpolyatomicmolecularsystems.49-51

We adopted eq 24 in the evaluation of the matrix V of eq 8,
DBOCs, and the off-diagonal coupling elements. The molecule
was placed in the SF nuclear coordinates with the origin at the
CNM and the z axis along the molecular axis. The second
derivative for each Cartesian coordinate was calculated by
numerical differentiation at the MCSCF (5e, 18o) level of theory
with the d-aug-cc-pV5Z basis. The close agreement with the
MRCISD results in the evaluation of the first derivative coupling
element FR� indicate that it is an economical approach for the
computation of the second derivatives with less severe com-
putational demands. A comparison of FR� obtained from
numerical differentiation with the directly calculated matrix
element of the electron velocity operator serves as a check on
the accuracy of the numerical differentiation procedure.

The procedure starts with the calculation of ṼR� as given in
eq 12, which is defined as

where the double primes denote the electronic wave functions
differentiated two times with respect to the nuclear coordinate,
x. The antisymmetric combination can be readily calculated from
the precalculated first derivative coupling

Equations 25 and 26 are obtained by differentiating the
orthogonality condition of the BO states. We expand the
electronic wave function over the nuclear displacement ∆x

and calculate the BO overlaps

and

By substituting eq 27 into eqs 28 and 29 and using a four-point
numerical procedure, we obtain

TABLE 1: Spectroscopic Constants, Equilibrium Distance
(Re), Dissociation Energy (De), Fundamental Harmonic
Vibrational Frequency (ωe), and Vibrational Anharmonicity
(ωexe) of 7Li2

+ (Energy in inverse centimeter, Distance in
angstroms)

Re De ωe ωexe ref
2Σg

+ 3.110 10 457.7 261.6 1.47 present
3.11 10 464(6) 262 ( 2 1.7 ( 5 exptl56,57

3.099 10 441 263.76 1.646 theory30

3.122 10 466 263.08 1.477 theory31

2Σu
+ 9.948 88.4 16.63 1.05 present

9.95 90 20.1 0.13 theory30

10.001 90 16.01 0.79 theory31

FR� ≡ 〈R|
∂

∂R
|�〉CNM ) 〈R|

∂

∂R
|�〉CC +

ηm7 + (η - 1)m6

m6 + m7
〈R|∇r|�〉CC, (22)

) 〈R|
∂

∂R
|�〉CC + 1

2
∆m〈R|∇r|�〉CC

FR� ) 1
2

∆m〈R|∇r|�〉CC ≈ 1
2

∆m(εR - ε�)〈R|r|�〉CC

(23)

VRR ) ∑
I

Ncoord

〈R|- 1
2mI

∇I
2|R〉 (24)

ṼR� ) 1
2

[〈R|�″〉 + 〈R″|�〉] (25)

∂

∂x
FR� ) 1

2
[〈R|�″〉 - 〈R″|�〉] (26)

R(x + ∆x) ) R(x) + ∆xR′(x) + 1
2

∆x2R″(x) + ...

(27)

OR�
∆x ≡ OR�(x, ∆x) ) 〈R(x - ∆x)|�(x + ∆x)〉 (28)

O�R
∆x ≡ O�R(x, ∆x) ) 〈�(x - ∆x)|R(x + ∆x)〉 (29)
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Biorthogonal molecular orbitals at displaced nuclear configura-
tions were used to calculate the BO overlaps.

The derived DBOCs for both states and the coupling element
ṼR� are shown in Figure 1. They vary slowly as a function of
internuclear distance, R. The asymptotic value of DBOC is
278.13 cm-1. Similar to the BO potentials, DBOCs for both
states show minima near the corresponding equilibrium distances
of the BO potentials. The asymptotic value of the off-diagonal
term, ṼR�, is known theoretically. It causes the two adiabatic
states to separate to the correct limits of (7Li + 6Li+) and (6Li
+ 7Li+) with the former lower in energy by ∆E ) 7.47 × 10-5

eV.16,17 Therefore, ṼR� )1/2∆E. The calculated asymptotic value
of ṼR�, 3.65 × 10-5 eV, agrees closely with the theoretical value
of the isotope shift. Field effects and other relativistic contribu-
tions17 are not included in our calculation. For light elements,
they are small. To be consistent with the exact separation, the
computed ṼR� values were shifted to 1/2∆E.

The accuracy in the numerical differentiation procedure was
checked by comparison of the first derivative coupling, given
by

with the analytical result of FR� evaluated by the simple two-
point formula. In the whole range of R, the x and y components
of FR�

num are always smaller than 5.0 × 10-7, except in the
repulsive region of the potentials. The z component is in good
agreement with the analytical result. The difference is normally
less than ∼5%, except in the region of small R, where the
numerical noise is large. The relatively large errors in the
repulsive region of the potentials cause little change in the scat-
tering calculation because of their small magnitudes compared
with the BO potentials and their differences.

The nonadiabatic potential curves obtained by diagonalizing
the matrix V of eq 8 are presented in Figure 2. With the
inclusion of the off-diagonal coupling matrix element, the gerade
and ungerade states of Li2

+ tend to the correct asymptotic limits
of (7Li6Li)+, separated by the isotope shift ∆E.

The Molpro 2006.1 suite of quantum chemistry programs was
used for all electronic structure calculations.52

IV. Near Resonance Charge Exchange

Calculations have been carried out for collision energies from
10-14 to 1 eV above the (6Li + 7Li+) threshold. The convergence
has been carefully examined for the number of partial waves,
the integration range, and the integration step length. The
computed cross sections are presented in Figure 3. The inelastic
exothermic process

is described as “quenching” in Figure 3. The cross section
behaves as 1/k, the Wigner threshold law,15 for energies below
10-10 eV. The reverse endothermic excitation process, which
is related to the quenching by microscopic reversibility, has a
cross section that approaches zero at the threshold ∆E. The
elastic cross section tends to a constant.

For multichannel scattering, zero energy elastic and inelastic
collisions can be described by a complex scattering length,53 R
- i�, the imaginary part of which is related directly to the
inelastic cross section. The derived complex scattering length
from the S matrix at low energies is reported in Table 2. In the
zero temperature limit, the quenching process has a rate constant
of 2.1 × 10-9 cm3 s-1, which is comparable to the similar
quenching process for ion-atom collisions of H with its
isotopes.14 Although the nonadiabatic couplings in the case of
Li are weaker than those of H, the smaller energy difference
∆E tends to increase the rate, as has been demonstrated in the
case of the hydrogen isotopes. At energies below 10-9 eV (∼10
µK), the quenching process dominates. Elastic processes prevail
otherwise.

Resonance charge exchange (RCE) occurs in an ensemble
of mixed isotopes. A comparison of the cross sections for RCE
and near resonance charge exchange (NRCE) is presented in

ṼR� ) 1

48∆x2
[16(OR�

∆x + O�R
∆x) - (OR�

2∆x + O�R
2∆x) - 30δR�] -

ϑ(∆x3) (30)

FR�
num ) 1

4x
(OR�

∆x - O�R
∆x) + ϑ(∆x2) (31)

6Li + 7Li+ f 6Li+ + 7Li

Figure 2. Nonadiabatic potential energy curves of (6Li + 7Li)+ as a
function of internuclear distances obtained by diagonalizing the matrix
V of eq 8. To be visible, the off-diagonal matrix elements of V were
enlarged by 10 before the diagonalization.

Figure 3. Charge exchange and elastic cross sections for (6Li + 7Li)+

as a function of collision energy above threshold.

TABLE 2: Scattering Length (atomic units) for Near
Resonance and Resonance Charge Exchange

R �
6Li + 7Li+ f 6Li+ + 7Li 286 145

ag au

6Li + 6Li+ -918 -1425
7Li + 7Li+ 14 337 1262
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Figure 4. In the low-energy range (E < 10-9 eV), charge
exchange is dominated by the large RCE rate of 7Li shown in
Figure 5, where the thermally averaged charge exchange rate
constants are plotted as a function of temperature. The enhance-
ment at ∼10-7 K in the rate constant for RCE of 7Li is a
reflection of the behavior of the phase shift difference as the
energy approaches zero and depends on the interaction poten-
tials. The smaller RCE cross sections of 6Li make little
contribution to charge exchange in the low-energy regime. The
small RCE cross sections of 6Li+ in 6Li occur because of the
similar scattering lengths of the two molecular states.

For collision energies above 10-3 eV, which is two orders of
magnitude larger than the threshold energy ∆E of (6Li7Li)+,
the cross sections for the three charge exchange processes are
very much the same, varying as (a ln E - b)2,54,55 a behavior
that reflects the exponential decrease in the exchange energy at
large R. Similar behavior was observed in isotopic ion-atom
collisions of H.14 For (6Li7Li)+, a ) 1.61a0 and b ) 27.8a0 with
E measured in electron volts and σct in units of a0

2.
In the case of RCE, scattering at ultracold temperatures is

characterized by elastic collision processes in the g and u states,
respectively. The corresponding scattering lengths ag and au for
the g and u states and for 6Li and 7Li are reported in Table 2.

Both of the elastic processes in the case of RCE have larger
cross sections than for NRCE. For energies above 10-6 eV, they
can be described by the semiclassical expression (µC4

2/E)1/3.54,55

The Langevin charge exchange model was found to be
successful in the intermediate energy range.13,54,55 The Langevin
thermal rate coefficient is independent of temperature and varies
weakly with the reduced mass as µ-1/2. It assumes that every
collision that surmounts the centrifugal barrier penetrates to
small distances and forms a complex that leads to reaction with
a probability of order unity. For 7Li+ ions undergoing charge
exchange with 6Li, the Langevin rate coefficient is 3.2 × 10-9

cm3 s-1.
The quantum mechanical rate coefficient at low energies

for the NRCE is also a constant independent of temperature
because the cross section varies inversely as the relative velocity.
It is determined by s-wave scattering. The s-wave scattering is
given by the scattering length, which is sensitive to the details
of the interaction potential and to the reduced mass. Figure 5
compares the Langevin formula with quantum mechanical
calculations. The quantal rate coefficients undergo small oscil-
lations and are always smaller than the Langevin value until a
temperature of ∼40 K is reached. A similar level of agreement
is found experimentally for charge exchange of Yb+ ions in
Yb atoms by Grier et al.12 where the threshold energy was
estimated to be ∼4000 neV, an order of magnitude smaller than
that of Li. In Figure 5, we also present the rate coefficients for
the reverse reaction of 6Li+ ions in a gas of 7Li atoms. The
forward (k+) and reverse (k-) rate coefficients are related by

The rate coefficients evaluated by eq 32 are consistent with those
derived from the computed excitation cross sections.

The charge exchange cross sections in the Wigner and
Langevin regimes vary as the inverse of velocity, albeit governed
by different physical principles. The rate coefficients in the two
regimes could be close because of chance. Therefore, care must
be taken when comparing with the Langevin charge exchange
rate coefficient.

V. Conclusions

We have investigated ion-atom collisions between the 6Li
and 7Li isotopes of the lithium atom at low energies. The NRCE
is enabled by the coupling of the nuclear and electronic motion,
which requires a treatment including adiabatic and nonadiabatic
corrections to the BO approximation.

We have performed ab initio calculations to construct the
BO potentials and the diagonal and off-diagonal corrections that
reflect the breakdown of the BO approximation. We have
demonstrated that the NRCE cross section in the low-energy
limit follows Wigner’s threshold law, varying as the inverse of
velocity, and has a large limiting rate constant of 2.1 × 10-9

cm3 s-1. In comparison, the resonance charge exchange rate goes
to zero. When the collision energy is much higher than the
threshold energy arising from the isotope shift, NRCE becomes
identical to resonance charge exchange. At electron volt
energies, the cross sections show a logarithmic dependence on
energy. Close agreement with the Langevin charge exchange
rate coefficient is found in the intermediate energy range.

Acknowledgment. P.Z. and A.D. acknowledge support from
the Chemical Science, Geoscience. and Bioscience Division of
the Office of Basic Energy Science, Office of Science, U.S.

Figure 4. Charge exchange (left) and elastic (right) cross sections of
the near resonance and the resonance collisions as a function of collision
energy above threshold.

Figure 5. Thermal rate constants of the charge exchange processes
for ion-atom collisions of Li isotopes as a function of temperature.
The Langevin rate constant is evaluated for the reduced mass of 6Li +
7Li+.

k+ ) k-e-∆E/kBT (32)

15090 J. Phys. Chem. A, Vol. 113, No. 52, 2009 Zhang et al.



Department of Energy. E.B. acknowledges travel support from
the Institute for Theoretical Atomic, Molecular, and Optical
Physics (ITAMP), which is funded by the NSF and the financial
support of “Sapienza”, University of Rome. The computational
resources were provided by the National Center for Atmospheric
Research (NCAR).

References and Notes

(1) Killian, T. C.; Kulin, S.; Bergeson, S. D.; Orozco, L. A.; Orzel,
C.; Rolston, S. L. Phys. ReV. Lett. 1999, 83, 4776.

(2) Mourachko, I.; Comparat, D.; Tomasi, F. d.; Fioretti, A.; Nosbaum,
P.; Akulin, V. M.; Pillet, P. Phys. ReV. Lett. 1998, 80, 253.

(3) Anderson, W. R.; Veale, J. R.; Gallagher, T. F. Phys. ReV. Lett.
1998, 80, 249.
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